CORE-MD

Coordinating Research and Evidence for Medical Devices

Improving the quality of post-market surveillance

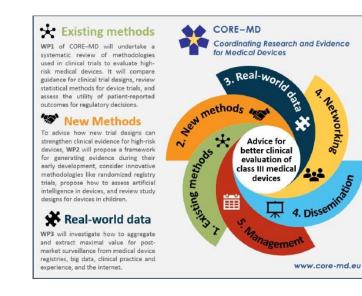
Perla J. Marang-van de Mheen, Delft University of Technology, Center for Safety in Healthcare On behalf of the CORE-MD team

Current regulation on performance and safety of medical devices

- Medical device regulation (MDR 2021) requires <u>continuous monitoring</u> of <u>performance</u> and <u>safety</u> of medical devices after CE marking
- Real-world data may provide insights on performance in daily clinical practice:
 - ✓ Unselected population-based data
 - ✓ Longer follow-up
 - ✓ Non-frequent adverse events

\rightarrow How can real-world data supplement evidence from RCTs?

CORE-MD



Challenges for regulators to use real-world data

Real-world data in CORE-MD project:

- Assessing quality of evidence from realworld data
- Combining data across real-world data sources
- Different definitions, reporting criteria and nomenclatures complicate access to safety incidents and reports
- Unclear how (often) conditions are applied to certificates of conformity



Networking

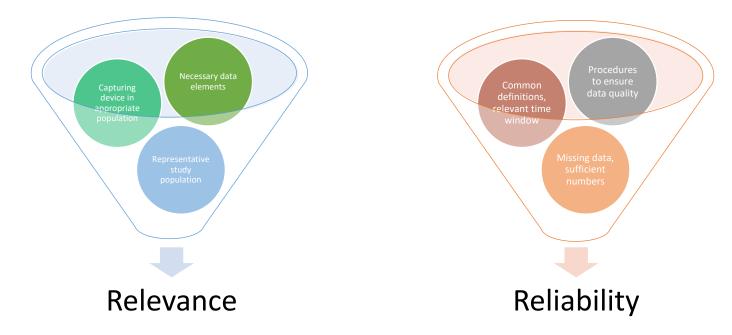
CORE-MD consortium and stakeholders to build on outcomes and stakeholders from WP1-3, proposing a hierarchy of clinical avidence for high-risk devices, an ethics charter for innovation, and a roadmap for educational objectives of stakeholders. Recommendations for the evolution of EU regulatory systems for high-risk devices will be prepared.

Dissemination

Wide consultation using an interactive communication platform together with multimedia dissemination of CORE-MD outputs will be crucial to its success. These will be implemented by WP4.

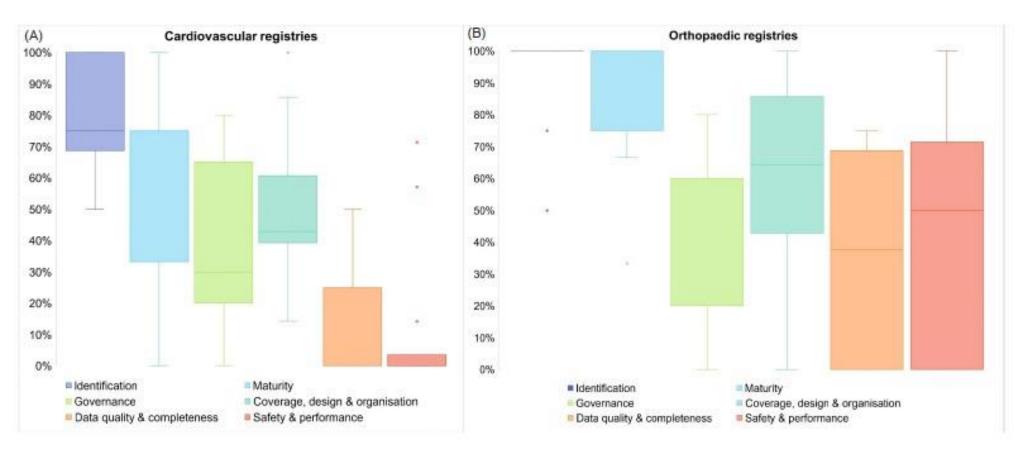
WP5 will manage the CORE-MD project, enabling exchanges between partners and collaborators and ensuring efficient fulfilment of its objectives, supported by a large medical professional society with an excellent track record of EU-funded project coordination and participation.

CORE-MD


Different types of real-world data

Need good quality evidence that can be generalized

Regulatory considerations for real-world evidence


- Key considerations: data quality, validity and transparency (e.g. EMA, FDA)
- Factors to assess real world data:

Reporting on 33 items influencing quality of registry data

L.A. Hoogervorst et al. Int J Health Policy Manag 2023;12:7648

CORE-MD

20 cardiovascular registries 26 orthopaedic registries

Examples of specific results

Cardiovascular registries

- Mostly publications of selected patient groups, 20% report total number of implant recipients
- Patient-level completeness: not reported
- Hospital-level coverage: 30% of registries, median 26 hospitals
- Funding: 45% (mostly public)
- Procedures to check data quality: 55%
- Missing data: 5%

Orthopaedic registries

- Mostly annual reports, total and annual volume of implants
- Patient-level completeness: in 16 (62%) registries, varying from 19-99%
- Hospital-level coverage: 35% of registries, median 71 hospitals
- Funding: 38% (mixed)
- Procedures to check data quality: 50%
- Missing data: 4%

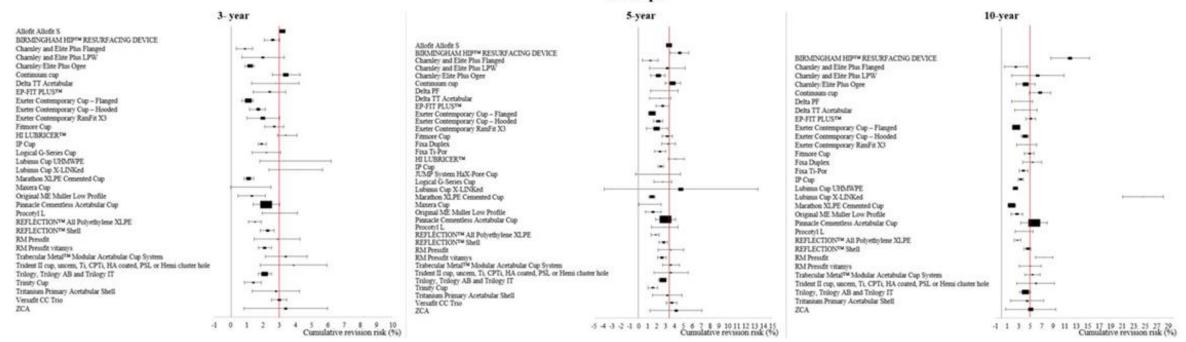
\rightarrow Agreement needed on items that all registries report

CORE-MD

Heterogeneity in reported outcomes, definitions & follow-up

Cardiovascular registries	Orthopaedic registries
Mortality: 18 (90%) registries - 70 different time points, up to 21 years - 30-day mortality: 80%	Revisions for any cause: 20 (77%) registries - 30 different time points, up to 25 years - 1-year revision: 38% - Large variation of reasons for revision
MACE: 8 (40%) registries - 17 different combinations of included complications - 7 different time points, 3-year MACE (33%)	 PROMs: 5 (19%) registries - 8 different scores for knee surgery patients - 11 different scores for hip surgery patients - different time points up to 10 years

\rightarrow Agreement needed on a common dataset



Need to evaluate performance across registries

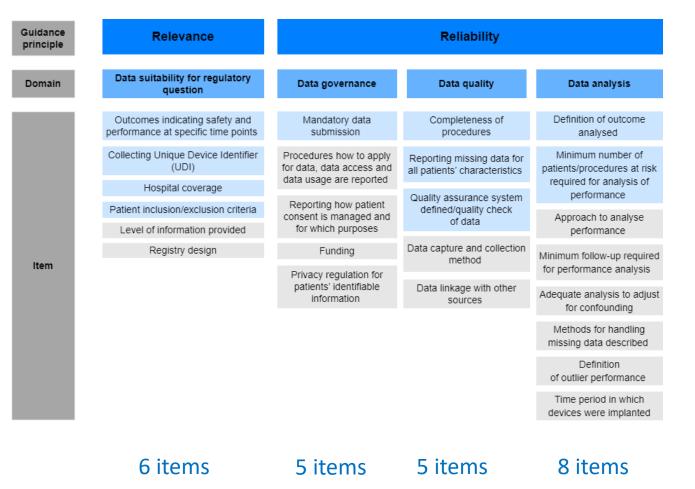
L.A. Hoogervorst et al. Validating Orthopaedic Data Evaluation Panel (ODEP) ratings across nine orthopaedic registries. JBJS (in press)

A* cups

ODEP A*-rating: based on maximum revision risk

About 30-40% of A* rated cups & stems receives A* rating based on evidence across 9 registries

CORE-MD

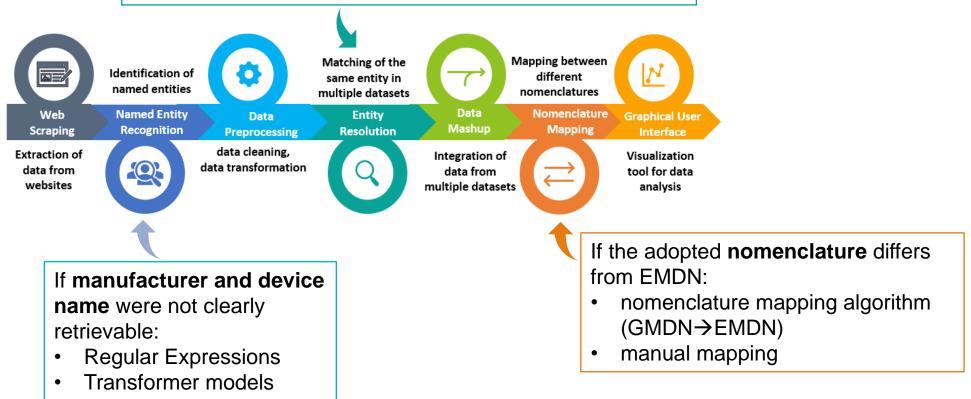

→ Variable performance, rating may not apply across registries

Decision framework to assess medical device performance

• Delphi study

- ✓ Consensus on minimum dataset to judge quality and analysis of registry data
- ✓ Ranking importance of items
- Participants: regulators, notified bodies, healthcare professionals, registries, methodological experts

CORE-MD


Coordinating Research and Evidence for Medical Devices

L.A. Hoogervorst et al. Consensus recommendations for a minimum dataset to assess the quality and analysis of registry data for regulatory post-market surveillance of high-risk medical devices

CORE-MD PMS tool: framework of operations

If a reference list of devices was not available for that specific country, then we considered the list of devices for Italy and Portugal (including EMDN codes).

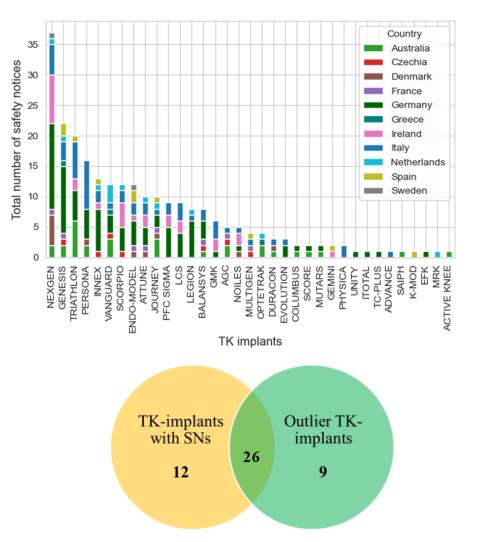
CORE-MD

Y. Ren et al. Validation of CORE-MD PMS Support Tool: A Novel Strategy for Aggregating Information from Notices of Failures to Support Medical Devices' Post-Market Surveillance

DEVICE AL RECALL DATABASE Nu	istralia mber of safety notices: 6995	Brazil Number of safety notices: 3371	Ca	 imber of safety notices: 3514 	Croatia Number of safety notice 1888	es:	Czechia Number of safety notices 3524			
Manufacturer		· · · · · · · · · · · · · · · · · · ·	anada e - Irel	- Croatia - Czechia	ia - Netherlands - F	Poland	÷			
EMDN 1	t update: 2(1000	c	Country	Manufacturer	Device	Safety _{Type}	notices details	Date	EMDN*	Url
EMDN 2 2	land	U	JSA	MRP LLC DBA AQUAB	AQUASTAT	MD	Recall	2024-02-22		
EMDN 3 3	mber of safe 700 74(600		weden	BECKMAN	DXL 9000 ACCESS IMMUN	IVD	Modification	2024-02-22	W0102060103	
EMDN 4	t update: 20 500		taly taly	FRESENIUS MEDICAL	CATHETER EXTENSION LU ESTEEM A FONDO APERTO	MD MD	Other Other	2024-02-22 2024-02-22	F900199 A100102	
Year 💼	_	U	JSA	PHILIPS MEDICAL SYS	AZURION R2 1	MD	Recall	2024-02-22	Z11030102	
	rtugal ³⁰⁰ mber of safi ₂₀₀	U	ISA	ABIOMED	AUTOMATED IMPELLA CO	MD	Recall	2024-02-22	C010180	
Las	71 t update: 2(100		JSA weden	PHILIPS MEDICAL SYS	AZURION R2 1 SERVO N BASENHET OCH	MD MD	Recall	2024-02-22	Z11030102 Z1203010503	
	0 26 ²		JSA	PTW FREIBURG	VERIQA	MD	Recall	2024-02-22	21203010303	
	L L		weden	VOCO	IONOSTAR PLUS	MD	Recall	2024-02-22	Q010199	

CORE-MD PMS tool: selection of device categories

Z - MEDICAL EQUIPMENT AND RELATED ACCESSORIES, SOFTWARE AND CONSUMABLES



Validation of CORE-MD post-market surveillance tool

Example Total Knee implants:

- CORE-MD tool identified 787 safety notices for 38 total knee implants
- Registries identified 35 implants with significantly higher revision risk
- Safety notices signal the same but also different implants

L.A. Hoogervorst, Y. Ren et al. Safety notices and registry outlier data measure different aspects of safety of total knee implants

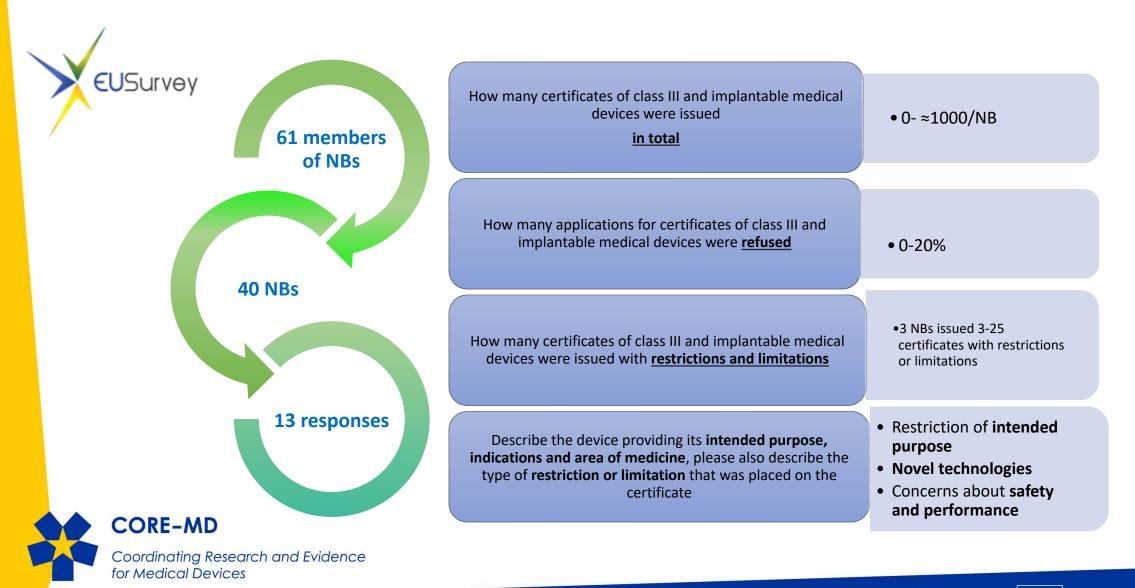
Coordinating Research and Evidence for Medical Devices

CORE-MD

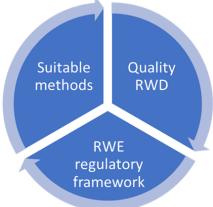
Applying conditions to certificates of conformity: literature

Systematic review

Agnieszka Dobrzynska, Jesús Aranda López, María Piedad Rosario Lozano, Juan Carlos Rejón-Parrilla, David Mark Epstein, Juan Antonio Blasco Amaro


- 7 studies: 5 systematic reviews, 2 HTA reports
- None discussed conditions or restrictions on certificates
- 2 papers discussed coverage with evidence development restrictions
- Key elements of post-marketing surveillance and vigilance activities: adverse event / vigilance reporting

→ Very limited evidence on applying conditions to certificates of conformity of medical devices in Europe



Applying restrictions to certificates of conformity: experiences

Improving the quality of post-market surveillance

- Regulators can use the decision framework to ensure good quality real-world evidence
- > Real-world data may help to streamline trials
- Combining data across countries
 - Earlier detection
 - Possible variable performance

- CORE-MD tool facilitates access to safety notices, may signal different implants and types of problems than registries
- More evidence is needed on applying conditions, particularly to facilitate access for devices that respond to unmet medical need

CORE-MD

CORE-MD, Coordinating Research and Evidence for Medical Devices, aims to translate expert scientific and clinical evidence on study designs for evaluating high-risk medical devices into advice for EU regulators. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 945260

