
CORE-MD

Coordinating Research and Evidence for Medical Devices

Recommendations from the CORE–MD consortium

CORE-MD Final Conference, Brussels, 15 March 2024

Fraser AG et al; Eur Heart J Qual Care Clin Outcomes. 2022; 8: 249–258

Coordinating Research and Evidence for Medical Devices

CORE-MD

Recommendations on methodologies for clinical evaluation of high-risk medical devices

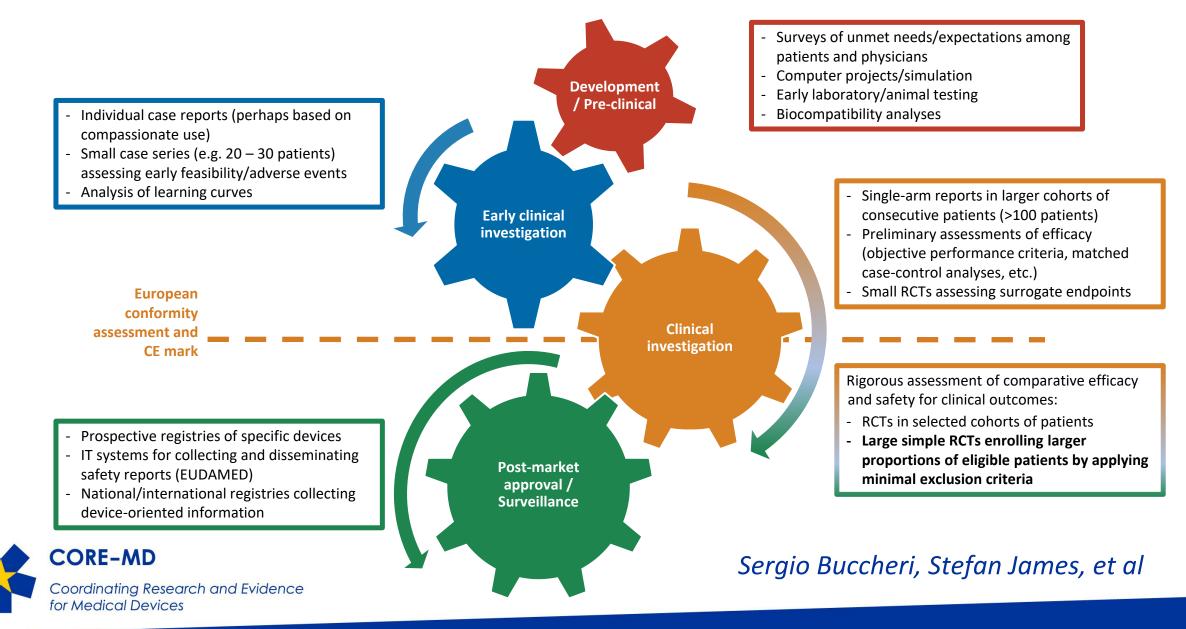
Year of Publication	Jurisdiction / Source	Document Name	Topics Addressed	
5 2010-2014 9 2015-2019 14 2020-2022	EU 9 US 10 IMDRF 3 Other 6	MEDDEV 2.7/1 Rev 4 MDCG 2019-9 Rev. 1 MDCG 2020-6 MDCG 2020-5 MDCG 2020-10 MDCG 2020-13 MDCG 2021-06 MDCG 2021-08 Belgium 2021 Clinical investigations Dossier FDA 2010 Bayes FDA 2010 Bayes FDA 2013 Design Pivotal FDA 2014 510 k Substantial equivalence FDA 2014 Sex-specific data FDA 2014 Aget, Race, ethnicity data / FDA 2016 Collection Race FDA 2017 Age, Race, ethnicity data / FDA 2016 Collection Race FDA 2019b Uncertainty in Benefit-Risk Determination FDA 2019b Uncertainty in Benefit-Risk Determination FDA 2022 Health Women FDA 2022 Health Women FDA 2022 Patient Engagement Regulatory IMDRF 2019 Clinical investigation IMDRF 2019 Clinical Evaluation MHRA 2021 Compiling a submission MHRA 2021 Clinical Investigations MHRA 2021 Clinical Investigations MHRA 2021 Clinical Trial guidance TGA 2022 / NHMRC Evidence requirements	Level of evidence / Study Types 4 Need for Cl / Substantial equivalence 7 Choice of study design 8 General design, Objectives / PICO 13 Statistical methods 13 Context / learning curve 3 Reporting / Documentation 14	

Petra-Schnell Inderst et al, UMIT Tirol

Coordinating Research and Evidence for Medical Devices

CORE-MD

From the perspective of the European regulatory system under the MDR, there is too little substantive guidance on evidence standards for the design of confirmatory clinical studies for high-risk medical devices.


Implications of these systematic reviews

- The evidence that is publicly available from clinical investigations of highrisk medical devices before their regulatory approval and CE-marking is insufficient to enable physicians to make informed recommendations to patients of which device to use.
- Clinical trial evidence should be published when new devices are approved.
- More systematic and efficient methods are needed to evaluate the longterm safety and performance of high-risk medical devices.

CORE-MD

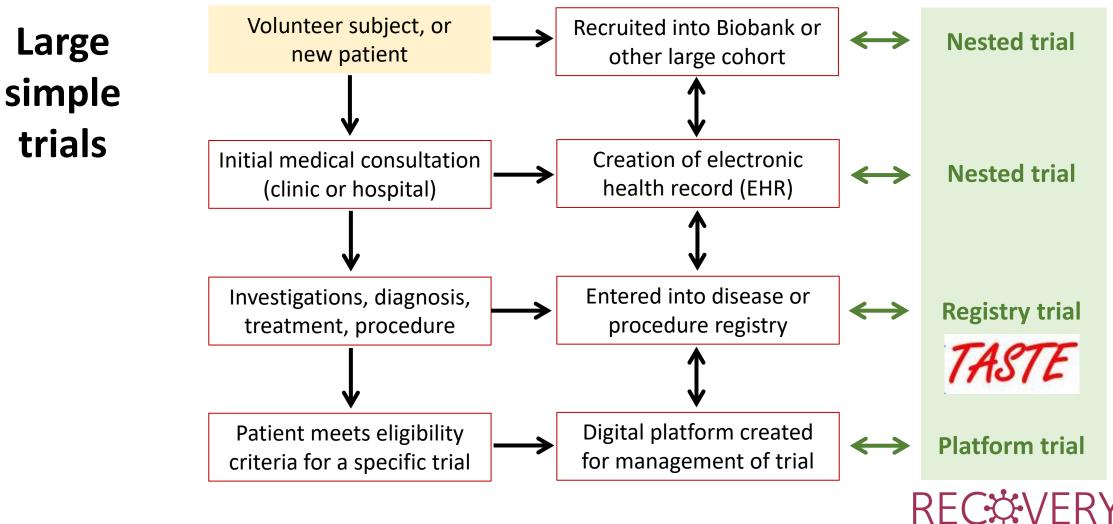
Methods for evaluation and clinical investigation of devices throughout their life-cycle

Example 1: Recommendations for clinical investigations of an innovative or orphan medical device

	Initial clinical studies	Early clinical studies	Rigorous clinical evaluation	Longterm clinical evaluation
Preferred designs	 Case report(s) of first implants. Planned case series with prospective documentation. 	 Prospective observational study (e.g. single-arm with consecutive patients). 	 RCT versus current 'state of the art', with blinded determination of clinical end-points. 	 Mandatory registry.

Example 2: Recommendations for clinical investigations of a new medical device in an established class

	Initial clinical studies	Early clinical studies	Rigorous clinical evaluation	Longterm clinical evaluation
Preferred designs	 Case report(s) of first implants. Prospective case series. 	 RCT with surrogate endpoint. Observational study with objective performance criteria. 	 RCT against active comparator. RCT powered for non-inferiority. 	 Prospective registry with complete recruitment, recording primary end-points and adverse events.



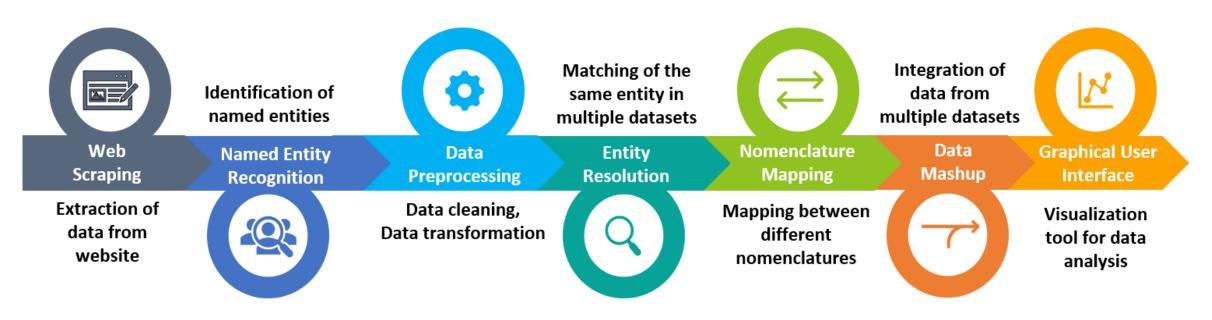
Divergent outcomes in non-randomised and randomised cardiovascular studies

Type of device	Observational study	Smaller RCT	Larger RCT
First-generation DES	PMID 17296822 / 2007	12050336 / 2002	14724301 / 2004
vs. bare metal stents ψ / = / =	 Propensity-score adjusted analysis (n=19,771) Increased mortality with DES vs. BMS 	 1:1 randomization (n=238) No in-stent restenosis with DES No stent thrombosis No difference in mortality 	 1:1 randomization (n=1,314) Less restenosis and repeat revascularization with DES No difference in mortality
	26875648 / 2016	27806897 / 2016	26457558, 30266412, 31553222, 37207924 / 2015–2023
Absorb bioresorbable vascular scaffold vs. everolimus-eluting metallic stent = / \downarrow / \downarrow	 Propensity-score matching (n=905 pairs) No difference in clinical outcomes 	 ABSORB II 2:1 randomization (n=501) No difference in vasoreactivity Higher late luminal loss with Absorb Higher TV-MI with Absorb 	 ABSORB III 2:1 randomization (n=2,008) Noninferiority of BVS for TLF at 1 yr More TLF, TV-MI, thrombosis to 5 yrs ABSORB IV 1:1 randomization (n=2,604) Noninferiority of BVS for TLF, 30 d & 1 y More TLF through 5 yrs
	20550973 / 2010	18256391, 18539223 / 2008	23991656, 25176395 / 25853743, 26474811 / 2013–2016
Manual thrombus aspiration vs. standard PCI $\psi / \uparrow / = , \psi$	 Multivariable adjustment (n=22,632) More deaths with thrombus aspiration (RR 1.16, 95% CI 1.05–1.28) 	 TAPAS, TAPAS-FU 1:1 randomization (n=1,071) Better reperfusion and clinical outcomes with thrombus aspiration Reduced risk of cardiac death with thrombus aspiration 	 TASTE, TASTE-FU 1:1 randomization (n=7,244) No difference in mortality at 30 d & 1 y TOTAL, TOTAL-FU 1:1 randomization (n=10,732) Composite CV outcomes ns 30 d & 1 y Increased risk of stroke

Large simple trial

Randomised Evaluation of COVID-19 Therapy

Sergio Buccheri, Stefan James, et al. Marion Mafham, Martin Landray, et al.


Coordinating Research and Evidence for Medical Devices

CORE-MD

Large

trials

Automated surveillance of post-market device reports (safety notices)

- Full application of Unique Device Identification, using common nomenclature
- Including standard data fields for clinically important details
- Complementary to data from medical device registries with comprehensive coverage

Ren Y et al, Ther Innov Reg Science. 2023; 57: 589–602

Training, education, and capacity building – Roadmap with educational objectives

Wild C, Ettinger S. J Med Dev Reg. 2023; 20: 45–56

AIHTA, BioMed Alliance, and TEAM-NB

Principal educational needs / skills

Notified body reviewers (n = 37)

- assessment of benefit-risk ratio and thresholds for acceptability
- design and development of medical devices
- methods for evaluating specific high-risk medical devices

Regulators (n = 58)

- assessment of benefit-risk ratio and thresholds for acceptability
- pre-clinical testing (methodology and evaluation)
- design and development of medical devices

Clinicians (n = 278)

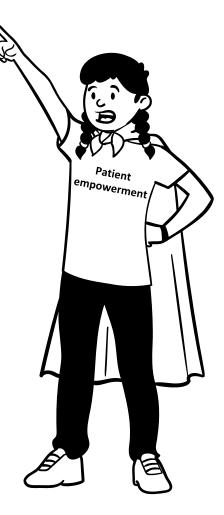
- study-designs and their advantages/disadvantages
- assessment of benefit-risk ratio and thresholds for acceptability
- choice of comparators (standard of care vs. sham vs. placebo)

CORE-MD

Coordinating Research and Evidence for Medical Devices

90% n = 409 80% 70% 60% 50% 40% 30% 20% 10% 0% Notified Body Regulator Clinician Yes, employer provided training in the past Yes, employer is currently offering training Yes, employer will be proposing training in the future

No


Training opportunities with current employer

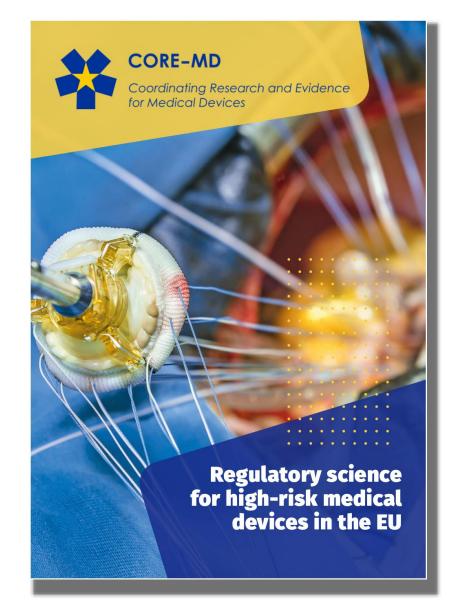
Recommendations for patient involvement

- **1. Develop a set of core indicators for PROMs** per disease area that addresses patients' concerns and capture information that is relevant from their perspective, to inform healthcare decisions and further research needs.
- **2. Develop ways to integrate PROMs** and patient experience data in the regulatory process for medical devices and assessment of the risk-benefit.
- **3. Involve patients throughout the lifecycle of medical devices** including in the development of information/communication materials.

Generic outcome domains	N
Treatment satisfaction	34
Sleep quality	11
General QoL	5
Coping	4
Emotional distress	3
Cognitive function	1
Depression	1

Diabetes specific outcome domains	N
Diabetes-specific QoL	11
Diabetes-specific distress	17
Fear of hypoglycaemia	25
Hypoglycaemia awareness	12
Hyperglycaemia Fear	1

CORE-MD


Coordinating Research and Evidence for Medical Devices

University of Göteborg, and European Patients Forum

Preparation of final recommendations

- A risk score to guide requirements for the clinical evaluation of AI devices
- A hierarchy of recommended methodologies for the clinical evaluation of high-risk devices
- Priniciples of 'large simple trials'
- A charter for ethical innovation
- A framework for using real-world evidence for post-market surveillance and clinical follow-up

'Regulatory science' for medical devices in the European Union

- Regulatory standards informed by high-quality scientific and clinical research
- Regulatory policies and practices that are evidence-based, and proportionate
- Need for more scientific and clinical expertise within DG SANTE
- Differences in EU governance between drugs and devices are illogical
- Full transparency of clinical evidence for devices, and decisions, is essential
- More efficient (and cost-effective) clinical trials and secondary research
- Development of special regulatory pathways (orphan devices, innovation ..)
- Engagement of the medical community with other stakeholders

